上一节讨论的分页机制是硬件对分页的支持,这是虚拟内存管理的硬件基础。要想使这种硬件机制充分发挥其功能,必须有相应软件的支持,我们来看一下Linux所定义的一些主要数据结构,其分布在include/asm-i386/目录下的page.h,pgtable.h及pgtable-2level.h三个文件中。
1. 表项的定义
如上所述,PGD、PMD及PT表的表项都占4个字节,因此,把它们定义为无符号长整数,分别叫做pgd_t、pmd_t及pte_t(pte 即Page table Entry),在page.h中定义如下:
typedef struct { unsigned long pte_low; } pte_t;
typedef struct { unsigned long pmd; } pmd_t;
typedef struct { unsigned long pgd; } pgd_t;
typedef struct { unsigned long pgprot; } pgprot_t;
可以看出,Linux没有把这几个类型直接定义长整数而是定义为一个结构,这是为了让gcc在编译时进行更严格的类型检查。另外,还定义了几个宏来访问这些结构的成分,这也是一种面向对象思想的体现:
#define pte_val(x) ((x).pte_low)
#define pmd_val(x) ((x).pmd)
#define pgd_val(x) ((x).pgd)
从图2.22和图2.24 可以看出,对这些表项应该定义成位段,但内核并没有这样定义,而是定义了一个页面保护结构pgprot_t和一些宏:
typedef struct { unsigned long pgprot; } pgprot_t;
#define pgprot_val(x) ((x).pgprot)
字段pgprot的值与图2.24页面项的低12位相对应,其中的9位对应0~9位,在pgtalbe.h中定义了对应的宏:
#define _PAGE_PRESENT 0x001
#define _PAGE_RW 0x002
#define _PAGE_USER 0x004
#define _PAGE_PWT 0x008
#define _PAGE_PCD 0x010
#define _PAGE_ACCESSED 0x020
#define _PAGE_DIRTY 0x040
#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
在你阅读源代码的过程中你能体会到,把标志位定义为宏而不是位段更有利于编码。
另外,页目录表及页表在pgtable.h中定义如下:
extern pgd_t swapper_pg_dir[1024];
extern unsigned long pg0[1024];
swapper_pg_dir为页目录表,pg0为一临时页表,每个表最多都有1024项。
2.线性地址域的定义
Intel线性地址的结构如图2.29所示:
31
22 21
11
0
图2.29 32位的线性地址结构
(1) 偏移量的位数
#define PAGE_SHIFT 12
#define PAGE_SIZE (1UL << PAGE_SHIFT)
#define PTRS_PER_PTE 1024
#define PAGE_MASK (~(PAGE_SIZE-1))
其中PAGE_SHIFT宏定义了偏移量的位数为12,因此页大小PAGE_SIZE为212=4096字节; PTRS_PER_PTE为页表的项数;最后PAGE_MASK值定义为0xfffff000,用以屏蔽掉偏移量域的所有位(12位)。
(2) PGDIR_SHIFT
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
PGDIR_SHIFT是页表所能映射区域线性地址的位数,它的值为22(12位的偏移量加上10位的页表);PTRS_PER_PGD为页目录目录项数;PGDIR_SIZE为页目录的大小,为222,即4MB;PGDIR_MASK为0xffc00000,用于屏蔽偏移量位与页表域的所有位。
(3)PMD_SHIFT
#define PMD_SHIFT 22
#define PTRS_PER_PMD 1
PMD_SHIFT为中间目录表映射的地址位数,其值也为22,但是因为Linux在386中只用了两级页表结构,因此,让其目录项个数为1,这就使得中间目录在指针序列中的位置被保存,以便同样的代码在32位系统和64位系统下都能使用。后面的讨论我们不再提及中间目录。